Tri-Party Deep Network Representation
نویسندگان
چکیده
Information network mining often requires examination of linkage relationships between nodes for analysis. Recently, network representation has emerged to represent each node in a vector format, embedding network structure, so off-the-shelf machine learning methods can be directly applied for analysis. To date, existing methods only focus on one aspect of node information and cannot leverage node labels. In this paper, we propose TriDNR, a tri-party deep network representation model, using information from three parties: node structure, node content, and node labels (if available) to jointly learn optimal node representation. TriDNR is based on our new coupled deep natural language module, whose learning is enforced at three levels: (1) at the network structure level, TriDNR exploits inter-node relationship by maximizing the probability of observing surrounding nodes given a node in random walks; (2) at the node content level, TriDNR captures node-word correlation by maximizing the co-occurrence of word sequence given a node; and (3) at the node label level, TriDNR models label-word correspondence by maximizing the probability of word sequence given a class label. The tri-party information is jointly fed into the neural network model to mutually enhance each other to learn optimal representation, and results in up to 79% classification accuracy gain, compared to state-of-the-art methods.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملStrategic Behavior in the Tri-Party Repo Market
R epo contracts are a kind of collateralized loan that has become predominant in the United States among large cash investors. There are several types of repo contracts, such as bilateral delivery-versuspayment repos, interdealer repos, and tri-party repos. A significant portion of repo transactions in the United States take the form of tri-party repos, where a third party (a clearing bank) pro...
متن کاملEnergy Absorption Analysis and Multi-objective Optimization of Tri-layer Cups Subjected to Quasi-static Axial Compressive Loading
In this paper, the energy absorption features of tri-layer explosive-welded deep-drawn cups subjected to quasi-static axial compressive loading are investigated numerically and experimentally. To produce the cups, tri-layer blanks composed of aluminum and stainless steel alloys were fabricated by an explosive-welding process and formed by a deep drawing setup. The quasi-static tests were carrie...
متن کاملDeep Subspace Clustering with Sparsity Prior
Subspace clustering aims to cluster unlabeled samples into multiple groups by implicitly seeking a subspace to fit each group. Most of existing methods are based on a shallow linear model, which may fail in handling data with nonlinear structure. In this paper, we propose a novel subspace clustering method – deeP subspAce clusteRing with sparsiTY prior (PARTY) – based on a new deep learning arc...
متن کامل